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SOME TWO-DIMENSIONAL FLOWS AT FINITE MAGNETIC REYNOLDS NUMBERS
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Flows at finite magnetic Reynolds numbers are characterized by a
strong effect of the induced magpetic fields on the stream. In the pre-
sent paper we determine the current distribution and estimate the in-
fluence of the Lorentz force component perpendicular to the stream in
a two-dimensional channel with electrodes. We also estimate the in-
fluence of nonuniformities of the velocity in the stream path of an in-
compressible fluid when the characteristic magnetic Reynolds numbers
are not small.

1. Some properties of induced magnetic fields in a
two-dimensional channel, The problem of determining
the induced magnetic field in magnetohydrodynamic
flow in a two-dimensional channel has been solved by
several authors(e. g., see [1—4]). In [1-3] the magnetic
field is determined from thegiven current distribution,
even though the current in fact depends on the mag-
netic field. We propose to solve this problem for a
two~dimensional channel of finite dimensions by using
a somewhat different mathematical approach. We
shall find the current distribution and magnetic field
assuming that the flow velocity u, {along the x axis) is
constant.

Let H; and H; be the x~ and z-components, respec-
tively, of the induced magnetic field; H; is the external
field, which is directed along the z axis; L is the
length of the channel; b is the dimension of the chan-
nel along the external magnetic field; [ is the distance
between electrodes.

The induced magnetic field is defined by the follow-
ing system (which does not take account of the depen-
dence on y):

Hye— Hy, = R(H; + Ho), Hy+ Hs, =0,
H3x = 6H3/6x etc.
R = 4oy,

For simplicity we assume throughout this paper that
the electrical circuit has been shorted out, that the ex~
ternal magnetic field is given, and that it is produced
without the aid of ferromagnetic materials.

Setting

H o= —A, H,=4,

we obtain

NA =R (A, + Hy, A= 0%oz? -+ 6%oz2. (1.1)
The right side of Eq. (1.1) is proportional to the
current, so that its solution is
L

b
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The field component Hy is defined as the solution of
the Fredholm integral equation

da’ dz’ .

(1.2)

Lb
_ (x—z) H0+H3)
—}h§‘§ (z—2')24(z—2')2

under the condition

L b

MK doar | < 1.

Here K is the kernel of integral equation (1.2),
which can be solved by the method of stuccessive ap-
proximations.,

The first approximation yields

(z— ') Hy
(g—P+(z—2)

H3=7\, dx' dz,,

Sl
[

When b/L « 1 the component Hg in this approxima-
tion depends weakly on z and is odd in x = L/2. For
values of x not too close to the boundary values we
have

Hy = AMbH, In £

The component Hy in the first approximation is

™

Oy

. (3" — z)do’ dz’
im0\ \ e
0
The function Hy{x,z) is even in x = L/2 and odd in
z =b/2, For small b/L the component H; is linear in
Z,

H1=R(1/2b_‘z)Ho,

if the values of x are not close to the boundary values.
At the channel boundaries we have

H, =Y R (yb— 2 H, for =0, L.

In the other limiting case, i.e., when b > L, we
can readily verify by direct substitution that for values
of z not close to the boundary values Eq. (1.2) has the
solution

1 2exp Rz
H3~H°<m—1)-

(1.3)
This agrees entirely with the solution obtained in[5].
As A — = the integrand in (1.2) must tend to zero

(i.e., Hy— —Hy), since Hy must remain a finite quan-

tity. This conclusion is valid, however, without allow-

ance for the magnetic field set up by the current in the
external electrical circuit.

2. Appearance of non-one-dimensional flow in a
narrow channel. The above approximation is valid only
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if the flow velocity u; is constant. However, the pres-
ence along the z axis of a force

F o= — joH;

(where j; is the component of the current density
along the y axis) leads to the appearance of a velocity
component W (along the z axis).

The appearance of non-one-dimensional flow was
considered by Pitkin [3], who estimated the variation
of the longitudinal component of the velocity. He as-
sumed, however, that such flow could be described
by means of the Bernoulli equation. Making use of the
above approximate expressions for the fields when
Rb €1 in the case of a channel such that b/L < 1, we
can show (see Appendix), that a strong nonuniformity
arises only at the channel boundaries for x = 0, L;
at points far away from the boundaries the force F is
compensated by the pressure gradient, and the ratio
w/uy is small if L » Ly = puy/oHZ, i.e., if the chan-
nel is long enough to enable the magnetic field to act
on the stream.

We note that the ratio of the longitudinal component
of the Lorentz force to the transverse component is
Hy/H, ~Rb, so that Rb < 1 is a sufficient condition
for the effect of the induced fields on the stream to be
small,

3. Flow in a wide channel with a one~-dimensfonal
velocity profile, In the presence of a magnetic field,
small gradients of the density or velocity of the me-
dium along the current path can result in consider-
able distortion of the streamlines, This is because
the dimensionless parameters characterizing the ef-
fect of the medium on the current flow through it
(e. 8., the product of the electronic cyclotron frequency
and the average time between collisions for an elec-
tron, or the magnetic Reynolds number) can general-
ly exceed unity (e.g., see[6—8]). Steenbeck|8]inves-
tigates the reduction of the current flowing between
electrodes in the presence of chaotic turbulence of
the medium as compared to the current which flows
when the liquid is at rest; he carries out his analysis
for a certain specified distribution of the velocity
correlations in an incompressible fluid. We propose
to investigate the effect of velocity nonuniformities
on the current during flow of a fluid in a wide (b >
>» L) channel of constant cross section. Let the
velocity component u(y) be given and let it be inde-
pendent of the maguetic field. This is the case, for
example, when metal strips move at different velocities.

We represent the velocity component u as u =
=y + uy, where uy is the average value of u, Mo-
tion with the velocity u, produces the magnetic field
Hj defined by relation (1.3). The presence of a fluc-
tuating component v gives rise to an electric field
with the potential ¢(x,y) and to a magnetic field
hy(x,y). The problem of velocity nonuniformities
along the stream path in the case of small Reynolds
numbers is solved numerically in [9].

From the equations of magnetohydrodynamics for
flow with the velocity u(y) we have

Y = 4m':va

H3x+h3x+4nd[q)y—‘u(H0+H3+h3)]=O (3.1)
The functions ¢ and hy; must satisfy the following
conditions: ¢ = 0for y =0, I; @ = 0 for x=0, L;
hyy=0fory=0, [.
The case of small magnetic Reynolds numbers is
simplest. Here system (3.1) becomes

h3U = 4n5(va Hax + by + 4xts ((Py - uHO) =0.

Eliminating the magnetic field, we obtain the equa-
tion for the potential:

Ap=u,H,.

The solution of this equation does not depend on x
and is of the form

@:S uHodyw—ZlilSI,LHody.

0
This implies that

4

I;=0, ILi=—cH,{u, <u>=%Su(y)dy-
(1}

Here Iy and I, are the components of the current
density.

For arbitrary magnetic Reynolds numbers RL we
consider the influence of the additional component uy
as a perturbation, This is valid provided the relative
velocity fluctuation and the ratio of the fluctuation~
induced magnetic field to the sum magnetic field are
small. In linear approximation system (3.1) becomes

hs!l = 43'55%:,

has + 4116 [y — uohs — uy (Ho - Hg)] = 0.

The function uy can be expanded in some complete
system of functions, e. g., in the system cos nzy/I.
The potential distribution in this case is of the form

qJ=§n_,‘(pn(z)sin~—"—I;l .

The current corrections due to the n-th harmonic
of the perturbation u, are

I Rug duln

o~ at dy
+ Apexp [(Ba— Ryaly, Jo— _ “wf

Jo ugnt?

{1 + Ajexp (b1 — R)z] +

x|t + 413 exp (s — R) o] +

+Aa%—~exp [(kz——R)w]} s Jo=-—ouo(Hs;+ Hy),

a="F, ki a=R+ VR T o,

Ay = &P RL —exp koL
1= exp kL —expkiL ~

Here j, is the value of the current in the absence
of fluctuations, and A, can be found from A, by inter-
changing subscripts.

Let us consider the case of large-scale fluctuation
and large RL. Let the fluctuation along the y axis be



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 11

sufficiently large, so that R%/0% > 1, but at the same
time let exp (@2 L/R) > 1 (it is clear here that

exp RL > 1). Then for values of x not too close to the
boundary values we have

BZ uln

]'-1_ R duy, ﬁ
Jo  ofup dy o T o u

Let us consider the other limiting case where the
fluctuation along y is so large that

Rla>1, @ L/R <1

(as above, exp RL > 1).
We then obtain the following expressions for the
current corrections for values of x not close to the

limiting values:
o 1,

To uwy dy

(L_ .’1?),

Iz Yin
= 7{1 +R(z—L)].

As is evident from the limiting cases considered
above, the current corrections can be substantial
even with small relative velocity fluctuations if the
magnetic Reynolds numbers determined both by chan-
nel length and by the fluctuation scale are large.

However, the ratio of the energy dissipation due
to the fluctuation component y to the sum dissipation,

(B + <N 73

is on the order of the square of the relative velocity
fluctuation without a factor containing the magnetic
Reynolds number.

4, Propagation of two-dimensional velocity fluc-
tuations in a wide channel, Let us investigate the
propagation of two-dimensional fluctuations by the
method of [10]. We assume that the perturbations of
the velocity and pressure at the channel entrance
are given, and consider their propagation downstream.
Eliminating the pressure froin the equations of con~
tinuity and motion

divv =0, PV v=—Vp+jx H
we obtain

Uty + vy = 0, Uley — U = 0. (4.1)

Here u, v are the components of the velocity per-
turbation.

As above, we expand the quantities which vanish at
the electrodes in the system of functions sinnmy/l.
Let us consider the propagation of the large-scale
fluctuation for n = 1. We seek a solution of the form

v = v (z) sin By,
Uy = uy (x) cos Py, f=mn/l.
From system (4.1) we obtain
v = (18 - Cye~ B) sin By,

uy = (Cqe= 8% — C1¢P* +4- Cy) cos By .

The coefficients Cj are defined by the given values
of the fluctuations at the channel input:

Ci+Ci=v0), Cy,+Cy—Cy=u0),
Cy — Cy = p; (0)/pu,.

The last equation follows from the linearized equa-
tion of motion

DUl = — pry— j1 (Ho + Hs)

if we take account of the condition j; = 0 for x = 0.
We can determine the distribution of the magnetic
fields and potential from the system

hay = 45 (@ + v (Hy + H3)],
h3x + 4ms [(py—u.1 ([’Io +H3)—L60h3] =0, (4.2)

The boundary conditions for the functions ¢ and hy
are similar to the conditions considered previously.
From the solution of system (4.2) we have

4no

by = — 8 [(Ho + Hs) (—g—cs -+ Crefe - Coe~ Bx) +

+ Crev™ + C;,e‘fzﬂ cos By,

71,2 =" R VIR LB, (4.3)

The values of the constants C, and C; can be de-
termined from the condition

hgy = 0 for x =0, L.

The function hy can generally be determined from
(4.3) to within the term C exp Rx, where C is a con-
stant, This term is omitted in expression (4.3). Re-
calling that the potential difference across the elec-
trodes is independent of C (by virtue of (4.2)), we
assume that the current due to the variation of h; is
equal to zero, i.e., that C = 0.

The current perturbation components can be ob-
tained by differentiating h,:

h=o [(Ho + Hi) (CaePe 4 Cae P -gi Cs) +
+Chev -+ C 5372’] sin By,
R CIES e A
+ ) Hot By o Cofp et € 2 eval

B

. 1D —f@expnl
= "exprl—expul’

f(z) = (Ho+ Hs) ( Rga - Crefe - Cze-ﬁx). (4.4)

The constant Cz; can be determined from C4 by
interchanging subscripts.

The above example of a one-dimensional velocity
profile can be obtained from this solution by setting
C1 = CZ = 0.

Expressions for the current perturbations (4.4)
imply that a similar picture of strong current distor-
tion results from velocity perturbations in the direc-
tion of the current, For example, let C; = C3=0. In
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the limiting case exp RL> 1, R/g> 1, p’L/R <« 1
the expressions for current corrections (4.4) become
(for values of x not close to the boundary values)

i_ o

R .
— 21 (LBL ___ oBx fo —
o T (e €5, T2 B Ji .

The above examples, therefore, show that the flow of an incom-
pressible fluid in a channel at large magnetic Reynolds numbers, the
propagation of perturbations in the channel, and the effect of velocity
inhomogeneities on the current are determined to a large extent by
the dimensions of the channel and by the conditions at its boundaries
(by the presence or absence of ferromagnetic materials), In a wide chan-
nel (a channe. with a one-dimensional magnetic field) small fluctua-
tions of the velocity along the current path result in strong distortion of
the current. In a narrow channel the induced magnetic fields result in
nonuniform flow at the channel entrance and outlet with an increasing
minimal magnetic Reynolds number,

5. Appendix. Let us consider the effect of induced magnetic fields
as a perturbation and write out a linearized system of equations for the
velocity perturbations u;, w and the pressure perturbation p;:

PUgly, = — Py — 20upHoHy — cuiH 2,

puow, = — p;. + suoH H,, U+ w, =0,

Let us assume that Hy depends only on x and is odd in L/2, and
that H; depends only on z. Eliminating u1 and p;, we obtain an equa-
tion for w:

W+ Wy - Ko, = 0, ko=cHo®[puo=1/Ly .

Since w must vanish at the channel wall, the solution of this equa~-
tion can be written as

w= 2 G, expkwsin vz,

s, n

T=nn/b, k3=v2(ko+ k) . (5.1)
Here Cg are some constants. Summation over s is from unity to

three. The functions w1 and p; can be determined by integration over
x:

Cx
wr=uz (0, 2) + 2 7 [1 —exp (k)] cosz
s
g n

= pi(0, z) — cHou; (0, z) x — 2oupH, \ Hedr —

Y L]

—GHy? Z % {x + [1 —exp (k)] (kis + '1}%‘)} cos Tz .
s n

To determine the coefficients Cs we make use of the conditions of
continuity of the pressure and normal velocity component at the channel
entrance and outlet. For example, let us specify the values of the per~
turbations u1 and p; at the entrance and the pressure perturbation p; at
the outlet (for simplicity we set them equal to zero, since these values
are determined by conditions outside the channel). This yields the fol-
lowing system for the coefficients Cg:

c H
E] 1in
E Ts =0, E Cgk exp k L = koup o,

s 8

N €k exp kL —1)=0.
§

Here Hip are the coefficients of the expansion of the function H;
in the system of functions sinnrz/b.
For v > kg the expression for w is

w B Hin
ug ‘v H,
n

kg N
[e’ =Ly _gmr - &k } sinvsz .

The last term in the expression for w is important for values of x
not close to the boundary values (x,L — x > b). However, for kgx > 1
this temm is also exponentially small. The maximum value of w is at
the boundary:

0, koR
"’(uoz) == U (=) sinwa

The condition 7 > k; generally need not be fulfilled for moderate
values of n. In this case the characteristic equation (5.1) has one positive
root ky and two complex conjugate raots kg 5 = %; + i, with 2 negative
realpart(e.g., fork < kg, k= (kor%)*/%. Let the condition t > ko not
be fulfilled for n = 1 which means, of course, that L > Lys). We denote
by wy the first term in the expansion of w in the system of functions
sin nrz/b:

XX

wy = (81"F L Se™F sin nar + S3e** cos %p2) sin 1z .

If we apply the same boundary conditions, the coefficient Sy is
proportional to exp(—kjL). Hence, even in the case b > Ly, for L >
> Ly the component Hy gives rise to non-one-dimensional flow only
at the channel boundaries, all three exponentials in the expression for
wy decay, and the perturbation wi diminishes far away from the chan~
nel boundaries.
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